Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Yiqun Zhang, ${ }^{\text {a }}$ Lian Ee Khoo ${ }^{\text {a }}$ and Seik Weng $\mathbf{N g}^{\text {b }}$ *

${ }^{\text {a }}$ National Institute of Education, Nanyang Technological Univerity, Singapore, and
${ }^{\mathbf{b}}$ Department of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia

Correspondence e-mail: seikweng@um.edu.my

Key indicators

Single-crystal X-ray study
$T=298 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.007 \AA$
R factor $=0.045$
$w R$ factor $=0.108$
Data-to-parameter ratio $=13.3$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2003 International Union of Crystallography Printed in Great Britain - all rights reserved

4-Bromo-2-(2-pyridylmethyliminomethyl)phenol

Two molecules of the title compound, $\mathrm{C}_{13} \mathrm{H}_{11} \mathrm{BrN}_{2} \mathrm{O}$, are linked by an intermolecular $\mathrm{Br} \cdots \mathrm{N}_{\text {pyridyl }}$ interaction of 3.263 (4) \AA across a center of inversion. The imino N atom is engaged in intramolecular hydrogen bonding with the phenol group $[\mathrm{O} \cdots \mathrm{N}=2.595(5) \AA$].

Comment

Schiff bases derived from the condensation of salicylaldehyde and a primary amine can be further reduced by sodium borohydride to form substituted phenol derivatives having both secondary and tertiary amino groups on the same substituent, e.g. $2-\mathrm{OH}-4-\mathrm{NO}_{2}-3-\mathrm{CH}_{2}-\mathrm{NH}-\mathrm{CH}_{2} \mathrm{CH}_{2}-\mathrm{N}\left(\mathrm{CH}_{3}\right)_{2}$, which, owing to its existence in the zwitterionic form (Hazell et al., 1997), is an excellent Lewis base that can coordinate to organotin Lewis acids. With the less electron-withdrawing Br atom in place of the $-\mathrm{NO}_{2}$ group, the compound probably does not exist in this zwitterionic form. However, the molecule is able to form complexes (Khoo, Yan, Goh \& Ng, 2000; Khoo et al., 2001). A previous study on the Schiff base 7-methoxy-3(salicyldene)aminocoumarin (Khoo, Zhang \& Ng, 2000) has revealed potentially useful lasing activity.

(I)

The bromo-substituted title compound, (I), is a monomeric compound whose hydroxy group is engaged in hydrogen bonding with the imino N atom (Fig. 1). Two molecules are linked by a $\mathrm{Br} \cdots \mathrm{N}_{\text {pyridyl }}$ interaction across an inversion center, forming a dimeric entity (Fig. 2).

Figure 1
ORTEP plot of (I), with displacement ellipsoids drawn at the 50% probability level. H atoms are drawn as spheres of arbitrary radii.

Received 5 September 2003
Accepted 9 September 2003
Online 18 September 2003

Figure 2
ORTEP plot of the $\mathrm{Br} \cdots \mathrm{N}$-linked dimeric unit.

Experimental

The compound was synthesized by condensing equimolar quantities of 5-bromosalicylaldehyde and 2-(aminomethyl)pyridine in chloroform, duplicating the method used for the synthesis of 2-(3-pyridylmethyliminomethyl)phenol (Cimerman et al., 1994).

Crystal data

$\mathrm{C}_{13} \mathrm{H}_{11} \mathrm{BrN}_{2} \mathrm{O}$
$M_{r}=291.15$
Triclinic, $P \overline{1}$
$a=4.474$ (1) A
$b=9.529$ (2) \AA
$c=14.271$ (2) \AA
$\alpha=92.65(1)^{\circ}$
$\beta=93.72(1)^{\circ}$
$\gamma=95.16(2)^{\circ}$
$V=603.8$ (2) \AA^{3}

$$
\begin{aligned}
& Z=2 \\
& D_{x}=1.601 \mathrm{Mg} \mathrm{~m}^{-3} \\
& \text { Mo } K \alpha \text { radiation } \\
& \text { Cell parameters from } 25 \\
& \quad \text { reflections } \\
& \theta=4.5-12.7^{\circ} \\
& \mu=3.39 \mathrm{~mm}^{-1} \\
& T=298(2) \mathrm{K} \\
& \text { Block, yellow } \\
& 0.20 \times 0.20 \times 0.10 \mathrm{~mm}
\end{aligned}
$$

Data collection

Siemens $P 4$ four-circle diffractometer
$\omega-2 \theta$ scans
Absorption correction: ψ scan (North et al., 1968) $T_{\text {min }}=0.531, T_{\text {max }}=0.713$
2912 measured reflections
2069 independent reflections
1416 reflections with $I>2 \sigma(I)$

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.045$
$w R\left(F^{2}\right)=0.108$
$S=1.01$
2069 reflections
155 parameters
H -atom parameters constrained

Table 1
Selected geometric parameters ($\left({ }^{\circ},{ }^{\circ}\right)$.

$\mathrm{Br} 1-\mathrm{C} 5$	$1.901(4)$	$\mathrm{C} 2-\mathrm{C} 3$	$1.395(6)$
$\mathrm{O} 1-\mathrm{C} 2$	$1.343(5)$	$\mathrm{C} 3-\mathrm{C} 4$	$1.379(6)$
$\mathrm{N} 1-\mathrm{C} 7$	$1.269(5)$	$\mathrm{C} 4-\mathrm{C} 5$	$1.384(6)$
$\mathrm{N} 1-\mathrm{C} 8$	$1.458(6)$	$\mathrm{C} 5-\mathrm{C} 6$	$1.370(6)$
$\mathrm{N} 2-\mathrm{C} 9$	$1.330(5)$	$\mathrm{C} 8-\mathrm{C} 9$	$1.513(6)$
$\mathrm{N} 2-\mathrm{C} 13$	$1.319(6)$	$\mathrm{C} 9-\mathrm{C} 10$	$1.371(6)$
$\mathrm{C} 1-\mathrm{C} 2$	$1.396(6)$	$\mathrm{C} 10-\mathrm{C} 11$	$1.377(7)$
$\mathrm{C} 1-\mathrm{C} 6$	$1.385(6)$	$\mathrm{C} 11-\mathrm{C} 12$	$1.361(8)$
$\mathrm{C} 1-\mathrm{C} 7$	$1.461(6)$	$\mathrm{C} 12-\mathrm{C} 13$	$1.361(7)$
$\mathrm{C} 7-\mathrm{N} 1-\mathrm{C} 8$	$118.3(4)$	$\mathrm{C} 6-\mathrm{C} 5-\mathrm{Br} 1$	$120.4(3)$
$\mathrm{C} 9-\mathrm{N} 2-\mathrm{C} 13$	$116.9(4)$	$\mathrm{C} 5-\mathrm{C} 6-\mathrm{C} 1$	$120.7(4)$
$\mathrm{C} 6-\mathrm{C} 1-\mathrm{C} 2$	$119.1(4)$	$\mathrm{N} 1-\mathrm{C} 7-\mathrm{C} 1$	$122.2(4)$
$\mathrm{C} 6-\mathrm{C} 1-\mathrm{C} 7$	$120.1(4)$	$\mathrm{N} 1-\mathrm{C} 8-\mathrm{C} 9$	$109.9(4)$
$\mathrm{C} 2-\mathrm{C} 1-\mathrm{C} 7$	$120.8(4)$	$\mathrm{N} 2-\mathrm{C} 9-\mathrm{C} 8$	$115.0(4)$
$\mathrm{O} 1-\mathrm{C} 2-\mathrm{C} 1$	$121.8(4)$	$\mathrm{N} 2-\mathrm{C} 9-\mathrm{C} 10$	$122.5(4)$
$\mathrm{O} 1-\mathrm{C} 2-\mathrm{C} 3$	$118.5(4)$	$\mathrm{C} 10-\mathrm{C} 9-\mathrm{C} 8$	$122.5(4)$
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3$	$119.6(4)$	$\mathrm{C} 9-\mathrm{C} 10-\mathrm{C} 11$	$119.0(5)$
$\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4$	$120.5(4)$	$\mathrm{C} 12-\mathrm{C} 11-\mathrm{C} 10$	$118.7(5)$
$\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 5$	$119.2(4)$	$\mathrm{C} 11-\mathrm{C} 12-\mathrm{C} 13$	$118.1(5)$
$\mathrm{C} 4-\mathrm{C} 5-\mathrm{C} 6$	$120.8(4)$	$\mathrm{N} 2-\mathrm{C} 13-\mathrm{C} 12$	$124.7(5)$
$\mathrm{C} 4-\mathrm{C} 5-\mathrm{Br} 1$	$118.8(3)$		

H atoms were positioned geometrically $\left(\mathrm{C}-\mathrm{H}=0.93 \AA\right.$ for $s p^{2}$ hybridized C atoms, $\mathrm{C}-\mathrm{H}=0.97 \AA$ for the $s p^{3}$-hybridized C atom and $\mathrm{O}-\mathrm{H}=0.82 \AA$ for the phenol H atom). Displacement parameters were set to $1.2 U_{\text {eq }}$ of the parent atoms for the aromatic H atoms and $1.5 U_{\text {eq }}$ for the other H atoms.

Data collection: XSCANS (Bruker, 1997); cell refinement: LEAST SQUARES in XSCANS; data reduction: REDUCE in XSCANS; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEPII (Johnson, 1976); software used to prepare material for publication: SHELXL97.

The authors thank Nanyang Technological University and the University of Malaya for supporting this work.

References

Bruker (1997). XSCANS. Version 2.21. Bruker AXS Inc., Madison, Wisconsin, USA.
Cimerman, Z., Kiralj, R. \& Galić, N. (1994). J. Mol. Struct. 323, 7-14.
Hazell, A., Overgaard, J., Lausen, S. K., Hu, H. \& Khoo, L. E. (1997). Acta Cryst. C53, 640-641.
Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
Khoo, L. E., Yan, B., Goh, N. K. \& Ng, S. W. (2000). Main Group Met. Chem. 23, 721-722.
Khoo, L. E., Yan, B., Goh, N. K. \& Ng, S. W. (2001). Main Group Met. Chem. 24, 817-818.
Khoo, L. E., Zhang, Y. \& Ng, S. W. (2000). Acta Cryst. C56, e350-e351.
North, A. C. T., Phillips, D. C. \& Mathews, F. S. (1968). Acta Cryst. A24, 351359.

Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.

